Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Surface-induced magnetism of the solids with impurities and vacancies

Identifieur interne : 002432 ( Main/Repository ); précédent : 002431; suivant : 002433

Surface-induced magnetism of the solids with impurities and vacancies

Auteurs : RBID : Pascal:11-0217632

Descripteurs français

English descriptors

Abstract

Using the quantum-mechanical approach combined with the image charge method we calculated the lowest energy levels of the impurities and neutral vacancies with two electrons or holes located in the vicinity of flat surface of different solids. Unexpectedly we obtained that the magnetic triplet state is the ground state of the impurities and neutral vacancies in the vicinity of surface, while the nonmagnetic singlet is the ground state in the bulk, for e.g. He atom, Li+, Be++ ions, etc. The energy difference between the lowest triplet and singlet states strongly depends on the electron (hole) effective mass μ, dielectric permittivity of the solid ε2 and the distance from the surface z0. For z0=0 and defect charge |Z| =2 the energy difference is more than several hundreds of Kelvins at μ=(0.5 - 1 )me and ε2=2-10, more than several tens of Kelvins at μ=(0.1 - 0.2)me and ε2=5-10, and not more than several Kelvins at μ< 0.1 me and ε2>15 (me is the mass of a free electron). Pair interaction of the identical surface defects (two doubly charged impurities or vacancies with two electrons or holes) reveals the ferromagnetic spin state with the maximal exchange energy at the definite distance between the defects (∼5-25 nm). We estimated the critical concentration of surface defects and transition temperature of ferromagnetic long-range order appearance in the framework of percolation and mean field theories, and RKKY approach for semiconductors like ZnO. We obtained that the nonmagnetic singlet state is the lowest one for a molecule with two electrons formed by a pair of identical surface impurities (like surface hydrogen), while its next state with deep enough negative energy minimum is the magnetic triplet. The metastable magnetic triplet state appeared for such molecule at the surface indicates the possibility of metastable ortho-states of the hydrogen-like molecules, while they are absent in the bulk of material. The two series of spectral lines are expected due to the coexistence of ortho- and para-states of the molecules at the surface. We hope that obtained results could provide an alternative mechanism of the room temperature ferromagnetism observed in TiO2, Hf02, and In2O3 thin films with contribution of the oxygen vacancies. We expect that both anion and cation vacancies near the flat surface act as magnetic defects because of their triplet ground state and Hund's rule. The theoretical forecasts are waiting for experimental justification allowing for the number of the defects in the vicinity of surface is much larger than in the bulk of as-grown samples.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0217632

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Surface-induced magnetism of the solids with impurities and vacancies</title>
<author>
<name sortKey="Morozovska, A N" uniqKey="Morozovska A">A. N. Morozovska</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, Krjijanovskogo 3</s1>
<s2>03142 Kiev</s2>
<s3>UKR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Ukraine</country>
<wicri:noRegion>03142 Kiev</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>V. Lashkarev Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, prospect Nauki 41</s1>
<s2>03028 Kiev</s2>
<s3>UKR</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Ukraine</country>
<wicri:noRegion>03028 Kiev</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Eliseev, E A" uniqKey="Eliseev E">E. A. Eliseev</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, Krjijanovskogo 3</s1>
<s2>03142 Kiev</s2>
<s3>UKR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Ukraine</country>
<wicri:noRegion>03142 Kiev</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Glinchuk, M D" uniqKey="Glinchuk M">M. D. Glinchuk</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, Krjijanovskogo 3</s1>
<s2>03142 Kiev</s2>
<s3>UKR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Ukraine</country>
<wicri:noRegion>03142 Kiev</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Blinc, R" uniqKey="Blinc R">R. Blinc</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Jožef Stefan Institute, P.O. Box 3000</s1>
<s2>1001 Ljubljana</s2>
<s3>SVN</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Slovénie</country>
<wicri:noRegion>1001 Ljubljana</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0217632</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0217632 INIST</idno>
<idno type="RBID">Pascal:11-0217632</idno>
<idno type="wicri:Area/Main/Corpus">003233</idno>
<idno type="wicri:Area/Main/Repository">002432</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0921-4526</idno>
<title level="j" type="abbreviated">Physica, B Condens. matter</title>
<title level="j" type="main">Physica. B, Condensed matter</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Analytical method</term>
<term>Approximate method</term>
<term>Defect states</term>
<term>Effective mass model</term>
<term>Exchange interactions</term>
<term>Impurities</term>
<term>Indium oxide</term>
<term>Semiconductor materials</term>
<term>Surface defect</term>
<term>Surface magnetism</term>
<term>Titanium oxide</term>
<term>Triplet state</term>
<term>Vacancies</term>
<term>Variational methods</term>
<term>Zinc oxide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Magnétisme surface</term>
<term>Impureté</term>
<term>Lacune</term>
<term>Etat défaut</term>
<term>Modèle masse effective</term>
<term>Méthode variationnelle</term>
<term>Méthode approchée</term>
<term>Méthode analytique</term>
<term>Etat triplet</term>
<term>Interaction échange</term>
<term>Défaut surface</term>
<term>Semiconducteur</term>
<term>Oxyde de zinc</term>
<term>Oxyde de titane</term>
<term>Oxyde d'indium</term>
<term>ZnO</term>
<term>TiO2</term>
<term>In2O3</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Using the quantum-mechanical approach combined with the image charge method we calculated the lowest energy levels of the impurities and neutral vacancies with two electrons or holes located in the vicinity of flat surface of different solids. Unexpectedly we obtained that the magnetic triplet state is the ground state of the impurities and neutral vacancies in the vicinity of surface, while the nonmagnetic singlet is the ground state in the bulk, for e.g. He atom, Li
<sup>+</sup>
, Be
<sup>++</sup>
ions, etc. The energy difference between the lowest triplet and singlet states strongly depends on the electron (hole) effective mass μ, dielectric permittivity of the solid ε
<sub>2</sub>
and the distance from the surface z
<sub>0</sub>
. For z
<sub>0</sub>
=0 and defect charge |Z| =2 the energy difference is more than several hundreds of Kelvins at μ=(0.5 - 1 )m
<sub>e</sub>
and ε
<sub>2</sub>
=2-10, more than several tens of Kelvins at μ=(0.1 - 0.2)m
<sub>e</sub>
and ε
<sub>2</sub>
=5-10, and not more than several Kelvins at μ< 0.1 m
<sub>e</sub>
and ε
<sub>2</sub>
>15 (m
<sub>e</sub>
is the mass of a free electron). Pair interaction of the identical surface defects (two doubly charged impurities or vacancies with two electrons or holes) reveals the ferromagnetic spin state with the maximal exchange energy at the definite distance between the defects (∼5-25 nm). We estimated the critical concentration of surface defects and transition temperature of ferromagnetic long-range order appearance in the framework of percolation and mean field theories, and RKKY approach for semiconductors like ZnO. We obtained that the nonmagnetic singlet state is the lowest one for a molecule with two electrons formed by a pair of identical surface impurities (like surface hydrogen), while its next state with deep enough negative energy minimum is the magnetic triplet. The metastable magnetic triplet state appeared for such molecule at the surface indicates the possibility of metastable ortho-states of the hydrogen-like molecules, while they are absent in the bulk of material. The two series of spectral lines are expected due to the coexistence of ortho- and para-states of the molecules at the surface. We hope that obtained results could provide an alternative mechanism of the room temperature ferromagnetism observed in TiO
<sub>2</sub>
, Hf0
<sub>2</sub>
, and In
<sub>2</sub>
O
<sub>3</sub>
thin films with contribution of the oxygen vacancies. We expect that both anion and cation vacancies near the flat surface act as magnetic defects because of their triplet ground state and Hund's rule. The theoretical forecasts are waiting for experimental justification allowing for the number of the defects in the vicinity of surface is much larger than in the bulk of as-grown samples.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0921-4526</s0>
</fA01>
<fA03 i2="1">
<s0>Physica, B Condens. matter</s0>
</fA03>
<fA05>
<s2>406</s2>
</fA05>
<fA06>
<s2>9</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Surface-induced magnetism of the solids with impurities and vacancies</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>MOROZOVSKA (A. N.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ELISEEV (E. A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>GLINCHUK (M. D.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>BLINC (R.)</s1>
</fA11>
<fA14 i1="01">
<s1>Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, Krjijanovskogo 3</s1>
<s2>03142 Kiev</s2>
<s3>UKR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>V. Lashkarev Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, prospect Nauki 41</s1>
<s2>03028 Kiev</s2>
<s3>UKR</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Jožef Stefan Institute, P.O. Box 3000</s1>
<s2>1001 Ljubljana</s2>
<s3>SVN</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>1673-1688</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>145B</s2>
<s5>354000190864390070</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>55 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0217632</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physica. B, Condensed matter</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Using the quantum-mechanical approach combined with the image charge method we calculated the lowest energy levels of the impurities and neutral vacancies with two electrons or holes located in the vicinity of flat surface of different solids. Unexpectedly we obtained that the magnetic triplet state is the ground state of the impurities and neutral vacancies in the vicinity of surface, while the nonmagnetic singlet is the ground state in the bulk, for e.g. He atom, Li
<sup>+</sup>
, Be
<sup>++</sup>
ions, etc. The energy difference between the lowest triplet and singlet states strongly depends on the electron (hole) effective mass μ, dielectric permittivity of the solid ε
<sub>2</sub>
and the distance from the surface z
<sub>0</sub>
. For z
<sub>0</sub>
=0 and defect charge |Z| =2 the energy difference is more than several hundreds of Kelvins at μ=(0.5 - 1 )m
<sub>e</sub>
and ε
<sub>2</sub>
=2-10, more than several tens of Kelvins at μ=(0.1 - 0.2)m
<sub>e</sub>
and ε
<sub>2</sub>
=5-10, and not more than several Kelvins at μ< 0.1 m
<sub>e</sub>
and ε
<sub>2</sub>
>15 (m
<sub>e</sub>
is the mass of a free electron). Pair interaction of the identical surface defects (two doubly charged impurities or vacancies with two electrons or holes) reveals the ferromagnetic spin state with the maximal exchange energy at the definite distance between the defects (∼5-25 nm). We estimated the critical concentration of surface defects and transition temperature of ferromagnetic long-range order appearance in the framework of percolation and mean field theories, and RKKY approach for semiconductors like ZnO. We obtained that the nonmagnetic singlet state is the lowest one for a molecule with two electrons formed by a pair of identical surface impurities (like surface hydrogen), while its next state with deep enough negative energy minimum is the magnetic triplet. The metastable magnetic triplet state appeared for such molecule at the surface indicates the possibility of metastable ortho-states of the hydrogen-like molecules, while they are absent in the bulk of material. The two series of spectral lines are expected due to the coexistence of ortho- and para-states of the molecules at the surface. We hope that obtained results could provide an alternative mechanism of the room temperature ferromagnetism observed in TiO
<sub>2</sub>
, Hf0
<sub>2</sub>
, and In
<sub>2</sub>
O
<sub>3</sub>
thin films with contribution of the oxygen vacancies. We expect that both anion and cation vacancies near the flat surface act as magnetic defects because of their triplet ground state and Hund's rule. The theoretical forecasts are waiting for experimental justification allowing for the number of the defects in the vicinity of surface is much larger than in the bulk of as-grown samples.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70E70R</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Magnétisme surface</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Surface magnetism</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Impureté</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Impurities</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Lacune</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Vacancies</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Etat défaut</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Defect states</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Modèle masse effective</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Effective mass model</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Modelo masa efectiva</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Méthode variationnelle</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Variational methods</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Méthode approchée</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Approximate method</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Método aproximado</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Méthode analytique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Analytical method</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Método analítico</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Etat triplet</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Triplet state</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Interaction échange</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Exchange interactions</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Défaut surface</s0>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Surface defect</s0>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Defecto superficie</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Semiconducteur</s0>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Semiconductor materials</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Oxyde de zinc</s0>
<s5>16</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Zinc oxide</s0>
<s5>16</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Zinc óxido</s0>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Oxyde de titane</s0>
<s5>17</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Titanium oxide</s0>
<s5>17</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Titanio óxido</s0>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>18</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>18</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>18</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>ZnO</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>TiO2</s0>
<s4>INC</s4>
<s5>53</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>In2O3</s0>
<s4>INC</s4>
<s5>54</s5>
</fC03>
<fN21>
<s1>143</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002432 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 002432 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:11-0217632
   |texte=   Surface-induced magnetism of the solids with impurities and vacancies
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024